Home
Class 11
MATHS
f((2tanx)/(1+tan^2x))=((cos2x+1)(sec^2x+...

`f((2tanx)/(1+tan^2x))=((cos2x+1)(sec^2x+2tanx))/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

f((2tan x)/(1+tan^(2)x))=((cos2x+1)(sec^(2)x+tan x))/(2) then f(x)=

f((2tan x)/(1+tan^(2)x))=((cos2x+1)(sec^(2)x+2tan x))/(2) then f((1)/(4))=

Evaluate int[cos^-1((1-tan^2x)/(1+tan^2x))+sin^-1((2tanx)/(1+tan^2x))]dx.

If x=30^@ , verify that : (i) tan2x=(2tanx)/(1-tan^2x) (ii) sinx=sqrt((1-cos2x)/2)

Solve the equation (1+tanx)/(1-tanx)=(1+sin2x)/(cos 2x) .

If int (2tan x+3)/(sin^(2)x+2cos^(2)x)dx =1_(n)(1+sec^(2)x)+ p tan^(-1)((tanx)/(q))+c ,then pq is

If |[sec^2x, tanx, tan^2x] , [tan^2x, sec^2x, tanx] , [tanx, tan^2x, sec^2x]| is expanded in the power of tanx then the constant is

Prove that: (sin2x)/(1+cos2x)=tanx

prove that (d)/(dx)[(1-tanx)/(1+tanx)]^(1/2)=(-1)/((sqrt(cos2x))cosx)

Evaluate: (i) int(sec^2x)/(tanx+2)\ dx (ii) int(2cos2x+sec^2x)/(sin2x+tanx-5)\ dx