Home
Class 12
MATHS
If cosA=cosBcosC and A+B+C=pi, then the ...

If cosA=cosBcosC and `A+B+C=pi`, then the value of cotBcotC is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA+sinB=c,cosA+cosB=D, then the value of sin(A+B)=

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA, sinB),(-cosA, sinA, cosB)|=0 then the value of B is -

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA, sinB),(-cosA, sinA, cosB)|=0 then the value of B is -

If cosA=4/5 and cosB=12/13 , then find the values of cos(A+B) and sin(A-B) , where A , B ((3pi)/(2) to 2pi ) .

If sinA=sinB,cosA=cosB , then the value of A in terms of B is

If sinA+sinB=C,cosA+cosB=D , then the value of sin(A+B) =

If A+B+C=pi, and cosA=cosB*cosC then tanB*tanC has the value equal to

If A + B =(pi)/(3) and cosA + cosB = 1then the value of cos ((A-B)/2) is_______

If A+B+C=pi, and cosA=cosB*cosC then tanB*tanC has the value equal to (i)1 (ii)1/2 (iii)2 (iv)3