Home
Class 12
MATHS
If A=[[1, 2], [-5, 1]] and A^(-1)=xA+yI,...

If `A=[[1, 2], [-5, 1]] and A^(-1)=xA+yI`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:} , then the values of x and y are

Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:} , then the values of x and y are

If A=[{:(1,2),(2,3):}] and A^(2)-xA=I_(2) then the value of x is

Let A = [(2,3),(-1,5)] . If A^(-1)=xA+yI , then the value of 2y+x , is ____

If A=[[1,4,0],[5,2,6],[1,7,1]] and A^(-1)=(1)/(36)(alpha A^(2)+beta A+yI), where I is an identity matrix of order 3, then value of alpha, beta, gamma

If A = [[5,2],[-1,6] and B = [[0,1],[0,1]] then find the matrices X and Y such that XA= B and AY =B .

If A=[[1, 0, 1], [0, 2, 3], [1, 2, 1]], b=[[1, 2, 3], [1, 1, 5], [2, 4, 7]] and XA=B , then X=

If A=[(1,3),(3,4)] and A^2-xA-I=0 then find x.

If A=[(1,3),(3,4)] and A^2-xA-I=0 then find x.

If A=[(3,2),(1,1)] then A^(2)+xA+yI=0 for (x,y) =