Home
Class 11
MATHS
Let m,in N and C(r) = ""^(n)C(r), for 0...

Let m,`in` N and `C_(r) = ""^(n)C_(r)`, for ` 0 le r len`
Statement-1: `(1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n)`
` = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!)`
Statement-2: For r `le`0
`""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

If m,n,r are positive integers such that rltm,n, then: ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+ . . ..+""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals:

Prove that 1/(m !)^n C_0+n/((m+1)!)^n C_1+(n(n-1))/((m+2)!)^n C_2++(n(n-1)2xx1)/((m+n)!)^n C_n=((m+n+1)(m+n+2)(m+2n))/((m+n)!)

Use the identity (1+x)^(m)(1+x)^(n)=(1+x)^(m+n) to prove Vandermonde's theorem, ""^(m)C_(r ) +""^(m)C_(r-1). ""^(n)C_( 1)+""^(m)C_(r -2) *""^(n)C_(2) +….+""^(n)C_(r )=""^((m+n))C_(r )

^(n)C_(m)+^(n-1)C_(m)+^(n-2)C_(m)+............+^(m)C_(m)