Home
Class 12
MATHS
If S(n)=3+(1+3+3^(2))/(3!)+(1+3+3^(2)+3^...

If `S_(n)=3+(1+3+3^(2))/(3!)+(1+3+3^(2)+3^(3))/(4!)`………… upto `n`-terms
Then the value of `[lim_(ntooo)S_(n)]` is (where [.] represent G.I.F)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(ntooo) [(1+2+3+...+n)/n^2] is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(3))/(5!)+... upto n terms then the sum infinite terms is

The value of lim_(ntooo) [(1+2+3+...+n)/(n^2+5n+2)] is

If S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!) then lim_(n rarr infty) S_(n) is equal to

If (1xx3 + 2xx5 + 3xx7 + ….. upto n terms) / ( 1^3 + 2^3 + 3^3 + …… upto n terms) = 5/9, find the value of n.

If (1)/(1^(3))+(1+2)/(1^(3)+2^(3))+(1+2+3)/(1^(3)+2^(3)+3^(3))+......n terms then lim_(n rarr oo)[S_(n)]

If lim_(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3 , then the range of x is (where n in N )

If lim_(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3 , then the range of x is (where n in N )