Home
Class 12
MATHS
If f(x)gt0 and differentiable in R, then...

If `f(x)gt0` and differentiable in R, then :`f'(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then int_(x to oo)(f(x))^f(-x) is

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then int_(x to oo)(f(x))^f(-x) is

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then int_(x to oo)(f(x))^f(-x) is

If f(x)gt0 and f"(x)gt0 forallx in R, then for any two real numbers x_1 and x_2,(x_1nex_2)

Let f : R to R be a function such that f(x+y) = f(x)+f(y),Aax, y in R. If f (x) is differentiable at x = 0, then

Let f:R rarr R satisfying f((x+y)/(k))=(f(x)+f(y))/(k)(k!=0,2). Let f(x) be differentiable on R and f'(0)=a then determine f(x)

Let f: R->R satisfying f((x+y)/k)=(f(x)+f(y))/k( k != 0,2) .Let f(x) be differentiable on R and f'(0) = a , then determine f(x) .

Let f: R->R satisfying f((x+y)/k)=(f(x)+f(y))/k( k != 0,2) .Let f(x) be differentiable on R and f'(0) = a , then determine f(x) .

If f(x) = 0 for x lt 0 and f(x) is differentiable at x = 0, then for x gt 0, f(x) may be

If f(x) = 0 for x lt 0 and f(x) is differentiable at x = 0, then for x gt 0, f(x) may be