Home
Class 12
MATHS
If y=log[(x-1)^(x-1)]-log[(x+1)^(x+1)],"...

If `y=log[(x-1)^(x-1)]-log[(x+1)^(x+1)]," then: "(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that (dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove that (dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove : (dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove that (dy)/(dx)=log((x-1)/(1+x))

If 'y=(x-1)log(x-1)-(x+1)log(x+1),p rov et h a t(dy)/(dx)=log((x-1)/(1+x))

If =(x-1)log(x-1)-(x+1)log(x+1) prove that (dy)/(dx)=log((x-1)/(1+x))

y=log(x/(1+bx)) then (dy)/(dx)

If y = (x-1)log(x-1)-(x+1)log(x+1) , prove that : dy/dx = log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that : dy/dx = log((x-1)/(1+x))