Home
Class 12
MATHS
The derivative of tan^(-1)[(sin x)/(1+ c...

The derivative of `tan^(-1)[(sin x)/(1+ cosx)]` with respect to `tan^(-1)[(cosx)/(1+sinx)]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)[(sinx)/(1+cosx)] with respect to tan^(-1)[(cosx)/(1+cosx)] is

Find the derivative of tan^(-1)((sinx)/(1+cosx)) with respect to tan^(-1)((cosx)/(1+sinx))

Find the derivative with tan^(-1) ((sinx )/(1 + cos x)) with respect to tan^(-1) ((cos x)/(1 + sin x))

Find the derivative with tan^(-1)(sinx/(1+cosx)) with respect to tan^(-1)(cosx/(1+sinx)) .

int tan^(-1)[(cosx)/(1-sinx)]dx=

tan^-1((1+cosx)/(sinx))

"tan"^(-1)(1+sinx)/(cosx)=

tan^(-1)[(cosx)/(1+sinx)] is equal to

Differentiate tan^(-1){ (sinx) / (1+cosx) } with respect to x

tan^(-1)((1+sinx)/cosx)=