Home
Class 11
MATHS
If tan x =b/a, then find the value of sq...

If tan x =b/a, then find the value of `sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tanx=(b)/(a) , then find the value of sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) .

If tanx=(b)/(a) , then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)/(a+b)).

If tanx=(b)/(a) , then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)/(a+b)).

If tanx=(b)/(a) , then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)/(a+b)).

If tan x = b//a then sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b)) is equal to

if tan x =b/a, then (sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))) is equal to-

If tan x=(b)/(a) " then " sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))=

If a>b>0 are two real numbers, then the value of sqrt(a b+(a-b)sqrt(a b+(a-b)sqrt(a b+(a-b)sqrt(a b+.....)))) is