Home
Class 12
MATHS
Find the value of lim(nrarroo)[(1)/(sqrt...

Find the value of `lim_(nrarroo)[(1)/(sqrt(2n-1)^(2))+(1)/(sqrt(4n-2^(2)))+...+(1)/(n)]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) [(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

The value of lim_(nrarroo) ((sqrtn^(2)+n-1)/(n))^(2sqrt(n^(2)+n-1)) is

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of lim_(nrarroo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1) is

lim_(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

Find the value of the limit lim_(nrarroo)(1^2+2^2+...+n^2)/n^3