Home
Class 12
MATHS
The minimum value of the function f(x...

The minimum value of the function `f(x)=2x^3-21 x^2+36 x-20` is `-128` (b) `-126` (c) `-120` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x)=x^(2)-x+2 is -

The minimum value of the function f(x)=2|x-1|+|x-2| is

The minimum value of the function f(x)=2|x-1|+|x-2| is -

The minimum value of the function f(x)=2x^(3)-21x^(2)+36x-20 is -128(b)-126(c)-120(d) none of these

The minimum value of the function f(x) = 2|x - 1| + |x - 2| is

Determine the maximum and minimum values of the function f(x)=2x^3-15x^2+36x+10

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.

The range of the function f(x)=(x^2-x)/(x^2+2x) is R (b) R-[1] (c) R={-1/2,1} (d) none of these

The range of the function f(x)=(x^2-x)/(x^2+2x) is R (b) R-[1] (c) R={-1/2,1} (d) none of these

Determine the maximum and minimum values of the function f(x) = 2x^(3) - 21 x^(2) + 36x-20