Home
Class 12
MATHS
At x = 0 , the function y = e^(-|x|) is...

At x = 0 , the function ` y = e^(-|x|)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

At x=0 ,the function y=e^(-2|x|) is

Number of values of x for which the function y=|e^(|x|)-e| is not differentiable,is

Find Delta y and dy for the function y = e^(x) + x when x = 5 , Delta x = 0.02 .

Find Deltay and dy for the function y=e^(x)+x when x=5, Deltax=0.02

Find (dy/dx) of the function x y=e^(x-y)

Find (dy)/(dx) for the function: y=x^3 + e^(2x)

Find (dy)/(dx) for the function: y=x^3 + e^(2x)

If the function y=e^(4x)+2e^(-x) satisfies the differential equation (d^(3)y)/(dx^(3))+A(dy)/(dx)+By=0 , then (A,B)-=