Home
Class 12
MATHS
Let f(x) = log ({x}) [x] g (x) =log (...

Let ` f(x) = log _({x}) [x]`
`g (x) =log _({x})-{x}`
`h (x) log _({x}) {x}`
where `[], {}` denotes the greatest integer function and fractional part function respectively.
Domine of `h (x)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = log _({x}) [x] g (x) =log _({x})-{x} h (x) log _({x}) {x} where [], {} denotes the greatest integer function and fractional part function respectively. For x in (1,5)the f (x) is not defined at how many points :

Let f(x) = log _({x}) [x] g (x) =log _({x})-{x} h (x) log _({x}) {x} where [], {} denotes the greatest integer function and fractional part function respectively. For x in (1,5)the f (x) is not defined at how many points :

Let f(x) = log _({x}) [x] g (x) =log _({x})-{x} h (x) log _({x}) {x} where [], {} denotes the greatest integer function and fractional part function respectively. If A = {x:x in domine of f (x))) and B {x:x domine of g (x)} then AA x in (1,5), A -B will be :

Let f(x) = log _({x}) [x] g (x) =log _({x})-{x} h (x) log _({x}) {x} where [], {} denotes the greatest integer function and fractional part function respectively. If A = {x:x in domine of f (x))) and B {x:x domine of g (x)} then AA x in (1,5), A -B will be :

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

The range of function f(x)=log_(x)([x]), where [.] and {.} denotes greatest integer and fractional part function respectively

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :