Home
Class 11
MATHS
If the ellipse (x^2)/(a^2-7)+(y^2)/(13=5...

If the ellipse `(x^2)/(a^2-7)+(y^2)/(13=5a)=1` is inscribed in a square of side length `sqrt(2)a` , then `a` is equal to `6/5` `(-oo,-sqrt(7))uu(sqrt(7),(13)/5)` `(-oo,-sqrt(7))uu((13)/5,sqrt(7),)` no such a exists

Promotional Banner

Similar Questions

Explore conceptually related problems

If the ellipse (x^2)/(a^2-7)+(y^2)/(13-5a)=1 is inscribed in a square of side length sqrt(2)a , then a is equal to (a) 6/5 (b) (-oo,-sqrt(7))uu(sqrt(7),(13)/5) (c) (-oo,-sqrt(7))uu((13)/5,sqrt(7),) (d)no such a exists

(5-sqrt(-7))(5+sqrt(-7))(2-sqrt(-1))(2+sqrt(-1))

the value of |((3-i sqrt(2))^(2))/(1+i2)| is equal to (i) (11)/(sqrt(5)) (ii) (18)/(sqrt(7)) (iii) (5)/(sqrt(11)) (iv) (13)/(sqrt(3))

(1)/(2sqrt(7)+sqrt(5))-(1)/(2sqrt(5)+sqrt(7)) simplify

(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5) Is equal to

(1)/(sqrt(2)+sqrt(5)-sqrt(7))

(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+(7sqrt(5))/(11)b

(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=