Home
Class 12
MATHS
x के सापेक्ष अवकलित करें । tan^(-1...

x के सापेक्ष अवकलित करें ।
`tan^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),0ltxlt(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx)))=

Cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))}=

cot^(-1)((sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx)))=...(0ltxltpi/2)

If y = tan^(-1) [(sqrt(1+sinx) + sqrt(1-sinx ))/(sqrt(1+sinx)-sqrt(1-sin x))], 0 lt xlt pi/2 then dy/dx =

y = cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),find dy/dx.

Prove that cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))