Home
Class 12
MATHS
Given f' (1) = 1 and d/(dx) f(2x))=f'(x...

Given `f' (1) = 1 and d/(dx) f(2x))=f'(x) AA x > 0`. If `f' (x)` is differentiable then there exists a numberd `x in (2,4)` such that `f'' (c)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f'(1)=1 and (d)/(dx)(f(2x))=f'(x)AA x>0. If f'(x) is differentiable then there exies a number c in(2,4) such that f''(c) equals

int[(d)/(dx)f(x)]dx=

If f(x) = x + 1 , find d/(dx)("fof")(x) .

If f(x)dx=g(x) and f^(-1)(x) is differentiable, then intf^(-1)(x)dx equal to

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

If (d)/(dx)(f(x))=4x such that f(2)=0, then f(x) is

Theorem: (d)/(dx)(int f(x)dx=f(x)

If (d)/(dx)f(x)=g(x), then int f(x)g(x)dx is equal to: