Home
Class 11
MATHS
Tangents are drawn from origin to the cu...

Tangents are drawn from origin to the curve `y = sin+cos x`·Then their points of contact lie on the curve

Promotional Banner

Similar Questions

Explore conceptually related problems

Tangents are drawn from origin to the curve y=sin+cos x Then their points of contact lie on the curve

3.(1) x + y = 0(2) x - y = 0If tangents are drawn from the origin to the curve y = sin x, then their points of contact lie on the curve(3) x2 - y2 = x2y2 (4) x2 + y2 = x2y2(2) x + y = xy(1) X- y = xy

Tangents are drawn from the origin to the curve y = sin x . Prove that their points of contact lie on the curve x^(2) y^(2) = (x^(2) - y^(2))

Tangents are drawn from the origin to the curve y=cos X. Their points of contact lie on

Tangents are drawn to the curve y=sin x from the origin.Then the point of contact lies on the curve (1)/(y^(2))-(1)/(x^(2))=lambda. The value of lambda is equal to

Tangents are drawn from the origin to curve y=sin x. Prove that points of contact lie on y^(2)=(x^(2))/(1+x^(2))