Home
Class 11
MATHS
Suppose f(x)=(3)^(px)+(3)^(qx), where p!...

Suppose `f(x)=(3)^(px)+(3)^(qx),` where `p!=q` and `(f''(x))/((log_(e)3)^(2))-(2f'(x))/((log_(e)3))-15f(x)=0` for all `x,` then the value of `|p+q|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f(x)=e^(ax)+e^(bx), where aneb and f''(x)-2f'(x)-15f(x)=0 for all x, then the value of |a+b| is equal to......

Suppose f(x)=e^(ax)+e^(bx), where a!=b, and that f''(x)-2f'(x)-15f(x)=0 for all x Then the value of (ab)/(3) is

Suppose f(x)=e^(ax)+e^(bx) ,where a!=b, and that f''(x)-2f'(x)-15f(x)=0 for all x Then the value of ab is equal to:

Find the range of f(x)=log_(e)x-((log_(e)x)^(2))/(|log_(e)x|)

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-15f(x)=0 for all x. Then the product ab is

f(x)=log_(x^(2))x^(3), write the value of f'(x)

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to