Home
Class 12
MATHS
The function y=x^(4)-8x^(3)+22x^(2)-24x+...

The function `y=x^(4)-8x^(3)+22x^(2)-24x+10` attains local maximum or minimum at `x=a, x=b` and `x=c` `(a < b < c)` .Then `a-2b+c=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function y=x^(4)-8x^(3)+22x^(2)-24x+10 attains local maximum of minimum at x=a, x = b and x = c (a lt b lt c) . Then a, b and c are in

The function f(x)=2x^(3)-3(a+b)x^(2)+6abx has a local maximum at x=a , if

f(x)=x^(4)-8x^(3)+22x^(2)-24x+20 has minimum value at x =

The function f(x)=e^(x^(3)-6x^(2)+10) attains local extremum at x = a and x = b (a < b), then the value of a+b is equal to

The function f(x)= x^(2)-4x, x in [0,4] attains minimum value at

If the function f(x)=x^3-12ax^2+36a^2x-4(agt0) attains its maximum and minimum at x=p and x=q respectively, and if 3p=q^2 , then a is equal to

24x^(3)+12x^(2)-8x b y 4x

Determine the intervals in which the function f(x)=x^(4)-8x^(3)+22x^(2)-24x+21 is decreasing or increasing.

Determine the intervals in which the function f(x)=x^(4)-8x^(3)+22x^(2)-24x+21 is decreasing or increasing.