Home
Class 11
MATHS
If g(x) is the inverse of f(x) and f(x) ...

If `g(x)` is the inverse of `f(x)` and `f(x)` has domain `x in[2,7]` where `f(2)=3` and `f(7)= 13`, then the value of `(1)/(17)(int_(2)^(7)f(x)dx+int_(3)^(13)g(y)dy)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x) is the inverse of f(x) and f(x) has domain x in[1,5] ,where f(1)=2 and f(5)=10 then the values of int_(1)^(5)f(x)dx+int_(2)^(10)g(y)dy equals

The value of int_(2)^(3)f(5-x)dx-int_(2)^(3)f(x)dx is

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

If int_(-1)^(4) f(x)=4 and int_(2)^(7) (3-f(x))dx=7 , then the value of int_(2)^(-1) f(x)dx , is

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to