Home
Class 12
MATHS
Let bar(a),bar(b),bar(c) be three non-ze...

Let `bar(a),bar(b),bar(c)` be three non-zero vectors such that `bar(a)+bar(b)+bar(c)=0` .Then `lambda(bar(a)timesbar(b))+bar(c)timesbar(b)+bar(a)timesbar(c)=0` where `lambda` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

bar(a),bar(b),bar(c) are vectors such that [bar(a)bar(b)bar(c)]=4 then [bar(a)timesbar(b) bar(b)timesbar(c) bar(c)timesbar(a)] is (A) 16 (B) 64 (C) 4 (D)8

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

bar(a),bar(b),bar(c) are three unit vectors such that bar(a)xx(bar(b)xxbar(c))(1)/(2)bar(b), then (bar(a),bar(b))=(bar(a),bar(c))=(bar(b),bar(c)), are non-collinear)

If bar(a), bar(b), bar(c) are non-coplanar vectors and x, y, z are scalars such that bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b)) then x =

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

If bar(a)+2bar(b)+3bar(c)=bar(0) then bar(a)xxbar(b)+bar(b)xxbar(c)+bar(c)xxbar(a)=