Home
Class 12
MATHS
A real valued function, f(x), f:(0,(pi)/...

A real valued function, `f(x)`, `f:(0,(pi)/(2))rarr R^+` satisfies the differential equation `xf'(x)=1+f(x){x^(2)f(x)-1}` and `f((pi)/(4))=(4)/(pi)`, then `lim_(x rarr0)f(x)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x,x 0 then find lim_(x rarr0)f(x) if exists

If f(x)=x,x 0 then lim_(x rarr0)f(x) is equal to

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If f(x)=(1)/(|x|) prove that lim_(x rarr0)f(x) does not

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

If f(x)=(sin(pi x)/(4))/(x+1) , then lim_(h rarr0)(f(1+h)-f(1))/(h^(2)+2h) is

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)