Home
Class 12
MATHS
A curve passing through (2,3) and sat...

A curve passing through `(2,3)` and satisfying the differential equation `int_0^x ty(t)dt=x^2y(x),(x >0)` is (a) `( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=13 (l)` (m) (b) `( n ) (o) (p) y^(( q )2( r ))( s )=( t )9/( u )2( v ) (w) x (x)` (y) (c) `( d ) (e) (f)(( g ) (h) x^(( i )2( j ))( k ))/( l )8( m ) (n)+( o )(( p ) (q) y^(( r )2( s ))( t ))/( u )(( v ) 18)( w ) (x)=1( y )` (z) (d) `( a a ) (bb) x y=6( c c )` (dd)

Promotional Banner

Similar Questions

Explore conceptually related problems

A curve passing through (2,3) and satisfying the differential equation int_(0)^(x)ty(t)dt=x^(2)y(x),(x>0) is

If the curve y=f(x) passing through the point (1,2) and satisfies the differential equation xdy+(y+x^(3)y^(2))dx=0 ,then

In Fig.88 P R is a straight line and /_P Q S :/_S Q R=7: 5. The measure of /_S Q R is (a) ( b ) (c) (d) (e) 60^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) 62 (m) (n) (o)1/( p )2( q ) (r)^(( s )0( t ))( u ) (v) (w) (c) ( d ) (e) 67 (f) (g) (h)1/( i )2( j ) (k)^(( l )0( m ))( n ) (o) (p) (d) ( q ) (r) (s) (t) 75^(( u )0( v ))( w ) (x) (y)

In Fig.93, if A O C is a straight line, then x= (a) ( b ) (c) (d) (e) 42^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 52^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 142^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 38^(( q )0( r ))( s ) (t) (u)

An angle is double of its supplement. The measure of the angle is (a) ( b ) (c) (d) (e) 60^(( f )0( g ))( h )\ ( i ) (j) (b) ( k ) (l) (m) (n) 120^(( o )0( p ))( q ) (r) (s) (t) ( u ) (v) (w) (x) 40^(( y )0( z ))( a a ) (bb) (cc) (d) ( d d ) (ee) (ff) (gg) 80^(( h h )0( i i ))( j j ) (kk) (ll)

The family of curves passing through (0,0) and satisfying the differential equation (y_(2))/(y_(1))=1( where backslash,y_(n)=(d^(n)y)/(dx^(n))) is (A)y=k (B) y=kx(C)y=k(e^(x)+1)(C)y=k(e^(x)-1)

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

Solution of the differential equation (dx)/(dy)-(x In x)/(1+In x)=(e^(y))/(1+In x) if y(1)=0 is (A) x^(x)=r^(yc^(g))(B)e^(y)=x^(e^(j))(C)x=ye^(y)(D)y=e^(x^(y))

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is