Home
Class 11
MATHS
Prove that tan9^(0)-tan27^(0)-cot27^(0)+...

Prove that `tan9^(0)-tan27^(0)-cot27^(0)+cot9^(0)=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan9^(0)-tan27^(0)-tan63^(@)+tan81^(@)

Prove that: tan75^(@)+cot75^(0)=4

tan9^(@)-tan27^(@)-tan63^(@)+tan81^(@)=?

" Prove that "(cos9^(0)+sin9^(0))/(cos9^(0)-sin9^(0))=cot36^(@)

Prove that: tan225^(@)cot405^(@)+tan765^(@)cot675^(0)=0

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Show that tan75^(@)+cot75^(0)=4

Q.Prove that : tan225^(^^)(Q)cot405^(^^)@+cot675^(^^)@=0

Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={0,ifpi/4

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)