Home
Class 11
MATHS
Let bar(a)=bar(i)+2bar(j)+4bar(k),bar(b)...

Let `bar(a)=bar(i)+2bar(j)+4bar(k),bar(b)=bar(i)+lambdabar(j)+4bar(k)`and `bar(c)=2bar(i)+4bar(j)+(lambda^(2)-1)bar(k)` be coplanar vectors. Then the nonzero vector `bar(a)timesbar(c)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

bar(b)=bar(i)-2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c)=bar(i)+ 3bar(j)-2bar(k) then bar(a).(bar(b)xxbar(c))

bar(a)=2bar(i)+bar(i)+bar(k),bar(b)=bar(i)+2bar(j)+2bar(k),bar(c)=bar(i)+bar(j)+2bar(k) and bar(a)xx(bar(b)xxbar(c))=

bar(a)=2bar(i)+3bar(j)-4bar(k),bar(b)=bar(i)+bar(j)+bar(k),bar(c)=4bar(i)+2bar(j)+3bar(k) then |bar(a)xx(bar(b)xxbar(c))|=

The lines bar(r)=bar(i)+bar(j)-bar(k)+s(3bar(i)-bar(j)) and bar(r)=4bar(i)-bar(k)+t(2bar(i)+3bar(k))

If bar(a)=2bar(i)-bar(j)-bar(k),bar(b)=bar(i)+2bar(j)-3bar(k) and bar(c)=3mp mubar(j)+5bar(k) are coplanar then mu root of the equation

bar(a)=bar(i)+bar(j)+bar(k),bar(b)=4bar(i)+3bar(j)+4bar(k),bar(c)=bar(i)+alphabar(j)+betabar(k) are linearly dependent vectors and |bar(c)|=sqrt(3) then

The reciprocal of bar(a) where bar(a)=-bar(i)+bar(j)+bar(k),bar(b)=bar(i)-bar(j)+bar(k),bar(c)=bar(i)+bar(j)+bar(k) is

If bar(a)=2bar(i)+3bar(j),bar(b)=bar(i)+bar(j)+bar(k),bar(c)=3bar(i)+lambdabar(j)+2bar(k) and [bar(a)bar(b)bar(c)]=-1 then lambda