Home
Class 11
MATHS
If tanA, tanB and tan C are the roots of...

If `tanA, tanB` and `tan C` are the roots of equation `x^(3)-alpha x^(2)-beta=0` ,and `(1+tan^(2)A)(1+tan^(2)B)(1+tan^(2)C)=k-1` ,then `k` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A,tan B and tan C are the roots of equation x^(3)-alpha x^(2)-beta=0 ,and (1+tan^(2)A)(1+tan^(2)B)(1+tan^(2)C)=k-1 ,then k (in terms of alpha and beta is equal to:

If tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(2)A) , then k is equal to

If tan alpha, tan beta, tan gamma are the roots of the equation x^(3)-px^(2)-r=0, then the value of (1+tan^(2)alpha)(1+tan^(2)beta)quad (1+tan^(2)gamma) is equal to (p-r)^(2) b.1+(p-r)^(2) c.1+(p-r)^(2) d.none of these

If tan A, tan B, tan C are the solutions of the equation x^(3)-k^(2)x^(2)-px+2k+1=0 , then Delta ABC is

Let (1+tan1^(ul0))(1+tan2^(ul0))......(1+tan45^(ul0))=2^(k) then k equal to

If (1 + tan A) (1 + tanB) = 2, then { A + B) is equal to

If tanA=(1)/(2) and tanB=(1)/(3) , then tan(2A+B) is equal to

Given that tan A, tan B are the roots of the equation x^(2)bx+c=0, the value of sin^(2)(alpha+beta) is