Home
Class 12
MATHS
"int(1)^(e)(1+log x)/(x)dx=...

`"int_(1)^(e)(1+log x)/(x)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate :int_(1)^(e)(log x)/(x)dx

int_(1)^(e) log (x) dx=

int_(1)^(e )((log x)^(4))/(x)dx=

int_(1)^(e )((log x)^(3))/(x)dx=

-int_(1)^(e)((log x)^(2))/(x)*dx

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

int e^(x)((1+x log x)/(x))dx

" (2) "int_(1)^(2)(log e^(x))/(x^(2))dx

The value of integral int_(1)^(e) (log x)^(3)dx , is

int_(1)^(e)(dx)/(x(1+log x))