Home
Class 12
MATHS
Find a for which lim(n->oo) (1^a+2^a+3^a...

Find `a` for which `lim_(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])=1/60`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find a for which lim_ (n rarr oo) (1 ^ (a) + 2 ^ (a) + 3 ^ (a) + ... + n ^ (a)) / ((n + 1) ^ (a- 1) [(na + 1) + (na + 2) + ... + (na + n)]) = (1) / (60)

For a in R (the set of all real numbers),a!=-1)(lim)_(n rarr oo)((1^(a)+2^(a)++n^(a))/((n+1)^(a-1)[(na+1)+(na+2)+......(na+n)])=(1)/(60) Then a=(a)5 (b) 7(c)(-15)/(2) (d) (-17)/(2)

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (1) / (n) [(1) / (n + 1) + (2) / (n + 2) + ... + (3n) / (4n)]

FInd lim_(n rarr oo)(2n-1)2^(n)(2n+1)^(-1)2^(1-n)