Home
Class 11
MATHS
Let f(x)={:{[x^(2) if xlex(0)], [ax +b ...

Let `f(x)={:{[x^(2) if xlex_(0)], [ax +b if xgtx_(0)]:}` if `'f'` is differentiable at `x_(0)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is derivable at x = 0 if

If f(x)={{:(e^(2x^(3+x)),x gt 0),(ax+b, x le 0):} is differentiable at x = 0, then

If f(x) = {{:( e^(x) +ax ,"for " x lt 0 ),( b(x-1) ^(2) ,"for " xge 0):}, is differentiable at x =0,then (a,b) is

Let f(x)={{:(x^(2)-ax+1",", x lt 0),(b(1-x)^(3)",", x ge0):} . If is a differentiable function, then the ordered pair (a, b) is

If f(x)={{:(e^(2x^(2)+x),":",xgt0),(ax+b,":",xle0):} is differentiable at x=0 , then

Let f(x)={(x^(p)"sin"1/x,x!=0),(0,x=0):} then f(x) is continuous but not differentiable at x=0 if