Home
Class 11
MATHS
The value of the limit lim(x rarr(pi)/(2...

The value of the limit `lim_(x rarr(pi)/(2))((4sqrt(2)(sin3x+sin x))/((2sin2x sin(3x/2)+cos(5x/2))-(sqrt(2)+sqrt(2)cos2x+cos(3x/2))))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the limit lim_(x to pi/2) (4sqrt2)(sin3x +sinx)/((2 sin 2x sin. (3x)/2 +cos. (5x)/2)-(sqrt(2)+sqrt(2)cos 2x +cos. (3x)/2)) is _______

lim_(x rarr(pi)/(2))(sqrt(2)-sqrt(1+sin x))/(cos^(2)x)

sqrt(sin 2x) cos 2x

Evaluate the limit: lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)

lim_ (x rarr (pi) / (2)) (sin2x) / (cos x)

lim_(x rarr0)(sin^(2)x)/(sqrt(2)-sqrt(1+cos x))

The value of lim_(x rarr(pi)/(2))tan^(2)x(sqrt(2sin^(2)x+3sin x+4)-sqrt(sin^(x)+6sin x+2)) is equal to

lim_ (x rarr (pi) / (4)) (4sqrt (2) - (cos x + sin x) ^ (5)) / (1-sin2x)

lim_ (x rarr (pi) / (4)) (2sqrt (2) - (cos x + sin x) ^ (3)) / (1-sin2x) =

lim_ (x rarr (pi) / (6)) (2-sqrt (3) cos x-sin x) / ((6x-pi) ^ (2))