Home
Class 12
MATHS
At x=0 ,the function y=e^(-2|x|) is...

At x=0 ,the function `y=e^(-2|x|)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

At x = 0 , the function y = e^(-|x|) is

Number of values of x for which the function y=|e^(|x|)-e| is not differentiable,is

Verify that the function y=e^(-3x) is a solution of the differential equation (d^(2)y)/(dx^(2))+(dy)/(dx)-6y=0

Show that the function y=(A+Bx)e^(3x) is a solution of the equation (d^(2)y)/(dx^(2))-6(dy)/(dx)+9y=0

If the function y=e^(4x)+2e^(-x) satisfies the differential equation (d^(3)y)/(dx^(3))+A(dy)/(dx)+By=0 , then (A,B)-=

The inverse of the function y=(e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)) is/an

The range of the function y=[x^(2)]-[x]^(2)x in[0,2] (where [] denotes the greatest integer function),is

The inverse of the function f(x)=(e^(x)-2e^(-x))/(e^(x)+2e^(-x))+1 is

Statement 1: The function x^(2)(e^(x)+e^(-x)) is increasing for all x>0 statement 2: The functions x^(2)e^(x) and x^(2)e^(-x) are increasing for all x>0 and the sum of two infunctions in any interval (a,b) is an increasing function in (a,b).