Home
Class 11
MATHS
f(x)={|x-a|sin(1/(x-a)),\ \ \ for\ x!=a0...

`f(x)={|x-a|sin(1/(x-a)),\ \ \ for\ x!=a0,\ \ \ for\ x=a` at `x=a`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={|x-a|sin((1)/(x-a)),quad f or x!=a0,quad f or x= at x=a

If f(x)=sin((1)/(x)), then at x=0

Prove that f(x)={x sin((1)/(x)),x!=0,0,x=0 is not differentiable at x=0

IF the function f(x) defined by f(x) = x sin ""(1)/(x) for x ne 0 =K for x =0 is continuous at x=0 , then k=

The function f(x)=(3sin x-sin3x)/(x^(3)) for x!=0;f(0)=1 at x=0 is

Let f(x)={0 for x=0x^(2)sin((pi)/(x)) for -1 1 or x<-1

If f(x)={sin((1)/(x)),x!=00,x=0 then it is discontinuous at-

Show that the function f(x)={((x^2sin(1/x),if,x!=0),(0,if,x=0)) is differentiable at x=0 and f'(0)=0