Home
Class 11
MATHS
Volume of parallelepiped formed by vect...

Volume of parallelepiped formed by vectors `vec a timesvec b,vec b timesvec c` and `vec c timesvec a` is 36 then find the volume of parallelepiped formed by the vectors `vec a,vec b` and `vec c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (vec a timesvec a)*vec b

vec i*(vec i timesvec i)=

Volume of parallelepiped determined by vectors vec a,vec b and vec c is 5. Then the volume of the parallelepiped determined by vectors 3(vec a+vec b),(vec b+vec c) and 2(vec c+vec a) is

The volume of a tetrahedron formed by the coterminous edges vec a,vec b, and vec c is 3. Then the volume of the parallelepiped formed by the coterminous edges vec a+vec b,vec b+vec c and vec c+vec a is 6 b.18 c.36 d.9

show that (vec B timesvec C)*|vec A times(vec B timesvec C)|=0

(vec i timesvec j).vec k=

If |vec a| =5, |vec b|=13 , |vec a timesvec b|=25 then find the value of vec a*vec b

If theta is angle between vec a and vec b and |vec a.vec b|=|vec a timesvec b| then find the value of theta

If vec A*vec B+|vec A timesvec B|=sqrt(2)AB " ,find the value of theta

If vec a,vec b, and vec c are unit vectors such that vec a+vec b+vec c=0, then find the value of vec a*vec b+vec b*vec c+vec c*vec a