Home
Class 10
MATHS
The product of the zeros of x^3+4x^2+x-6...

The product of the zeros of `x^3+4x^2+x-6` is (a) `-4` (b) `4` (c) `6` (d) `-6`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the zeros of y=3x^(2)-6x-4 is

If the product of the zeros of the polynomial f(x)= ax^3-6x^2+11x-6 is 4, then a = .....

If the product of zeros of the polynomial f(x)=a x^3-6x^2+11 x-6 is 4, then a= (a) 3/2 (b) -3/2 (c) 2/3 (d) -2/3

The minimum value of f(x)=x^4-x^2-2x+6 is (a) 6 (b) 4 (c) 8 (d) none of these

If (x-2)/3=(2x-1)/3-1, then x= (a) 2 (b) 4 (c) 6 (d) 8

The product (x^2-1)(x^4+x^2+1) is equal to: (a) x^8-1 (b) x^8+1 (c) x^6-1 (d) x^6+1

If the product of zeros of the polynomial f(x)=ax^(3)-6x^(2)+11x-6 is 4, then a= (a) (3)/(2)(b)-(3)/(2)(c)(2)/(3)(d)-(2)/(3)

The minimum value of f(x)=x^(4)-x^(2)-2x+6 is (a) 6 (b) 4 (c) 8 (d) none of these

The maximum value of f(x)=x/(1+4x+x^2) is -1/4 (b) -1/3 (c) 1/6 (d) 1/6

The maximum value of f(x)=x/(1+4x+x^2) is -1/4 (b) -1/3 (c) 1/6 (d) 1/6