Home
Class 12
MATHS
Consider the function f(x)=(sqrt(1+cos x...

Consider the function `f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x))` then
Q. If `x in (pi, 2pi)` then f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If piltxlt2pi then (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))

If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2) and x in (pi,2pi) then 'a' is equal to :

If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2) and x in (pi,2pi) then 'a' is equal to :

If the function f(x)=(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx)) If the value of f(pi/3)=a+bsqrt(c) then a+b+c=

If the function f(x)=(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x)) If the value of f((pi)/(3))=a+b sqrt(c) then a+b+c=

Prove that tan^(-1) {(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cos x)-sqrt(1-cosx))}=pi/4+x/2

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

Simplest form of tan^(-1)((sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))), pi lt x lt (3 pi)/(2) is: