Home
Class 12
MATHS
Center of the circle x^(2) + y^(2) - 4x ...

Center of the circle `x^(2) + y^(2) - 4x + 6y - 12 = 0` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

Center of the circle x^(2) + y^(2) - 6x + 4y - 12 = 0 is -

The radius of the circle x^(2) + y^(2) + 4x - 6y + 12 = 0 is

The radius of the circle x^(2) + y^(2) + 4x - 6y + 12 = 0 is

If the circle x^(2) + y^(2) + 4x - 6y - c = 0 bissects the circumference of the circle x^(2) + y^(2) - 6x + 4y - 12 = 0 , then c =

The number of common tangent to the circles x^(2) + y^(2) + 4x - 6y - 12 = 0 and x^(2) + y^(2) - 8x + 10y + 5 = 0 is

Find the pole of x + y + 2= 0 with respect to the circle x^(2)+ y^(2) - 4x + 6y -12= 0 .

Equation of the circle concentric with the circle x^(2) + y^(2) + 8x + 10 y - 7 = 0 , and passing through the centre of the circle x^(2) + y^(2) - 4x - 6y = 0 ,is

Equation of the circle concentric with the circle x^(2) + y^(2) + 8x + 10 y - 7 = 0 , and passing through the centre of the circle x^(2) + y^(2) - 4x - 6y = 0 ,is