Home
Class 12
MATHS
Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2...

Let `E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……..` upto `50` terms where `[.]` denotes the greatest integer terms then

Promotional Banner

Similar Questions

Explore conceptually related problems

[-(1)/(3)]+[-(1)/(3)-(1)/(100)]+[-(1)/(3)-(2)/(100)]+….+[-(1)/(3)-(99)/(100)] is equal to (where [.] denotes greatest integer function)

[[-(1)/(3)]+[-(1)/(3)-(1)/(100)]+[-(1)/(3)-(2)/(100)]+...+[-(1)/(3)-(99)/(100)] is equal to (where [.] denotes greatest integer function)

Let E=[(1)/(3)+(1)/(50)]+[(1)/(3)+(2)/(50)]+... upto 50 terms,then exponent of 2 in (E)! is

If 1/1^3+[1+2]/[1^3+2^3]+[1+2+3]/[1^3+2^3+3^3]+..... upto n terms,then lim_(n->oo)[S_n], where [.] denotes the greatest integer function.

The area of the smaller region in which the curve y=[(x^(3))/(100)+(x)/(50)] where [.] denotes the greatest integer function, divides the circles (x-2)^(2)+(y+1)^(2)=4 , is equal to :

What is the value of [sqrt(1)]+[sqrt(2)]+[sqrt(3)]+…+[sqrt(49)]+[sqrt(50)] where [x] denoted greatest integer function?

The value of x where x:2(1)/(3)21:50 is 1(1)/(49) b.1(1)/(50) c.(49)/(50) d.(27)/(50)