Home
Class 12
MATHS
For and odd integer n ge 1, n^(3) - (n -...

For and odd integer `n ge 1, n^(3) - (n - 1)^(3) ` + ……
`+ (- 1)^(n-1) 1^(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any odd integer n ge1 , n^(3) - ( n - 1)^(3) + "….." + ( -1)^(n-1)1^(3) equals :

If n is an odd integer greater than or equal to 1, then the value of : n^(3) - ( n - 1)^(3) + ( n -2)^(3) - "........." + ( - 1)^(n-1) . 1^(3) is :

For every integer n ge 1, (3^(2n) -1) is divisible by

If n is an odd integer greater than or equal to 1, then the value of n^3 - (n-1)^3 + (n-1)^3 - (n-1)^3 + .... + (-1)^(n-1) 1^3

If n is an odd integer greater than or equal to 1, then the value of n^3 - (n-1)^3 + (n-2)^3 - (n-3)^3 + .... + (-1)^(n-1) 1^3

If n is an odd integer greater than or equal to 1, then the value of n^3 - (n-1)^3 + (n-2)^3 - (n-3)^3 + .... + (-1)^(n-1) 1^3

If diagA=[a_(1),a_(2),a_(3)] , then for any integer n ge 1 show that A^(n) = diag[a_(1)^(n), a_(2)^(n), a_(3)^(n)]

For a positive integer n , let a(n) = 1+ 1/2 + 1/3 +…+ 1/(2^(n)-1) : Then