Home
Class 12
MATHS
Let f(x) = (1)/(sqrt(|x-1|-[x])) where[....

Let `f(x) = (1)/(sqrt(|x-1|-[x]))` where[.] denotes the greatest integer funciton them the domain of `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then