Home
Class 12
MATHS
int1/(x^2-1)ln((x-1)/(x+1))dx equals:...

`int1/(x^2-1)ln((x-1)/(x+1))`dx equals:

Promotional Banner

Similar Questions

Explore conceptually related problems

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

int_(0)^(1)(log(1)/(x))^(n-1)dx equals

int_(0)^(1)log((1)/(x)-1)dx is equal to

int(1)/(x)log((1)/(x))dx=

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

int(log(x+1)-logx)/(x(x+1))dx is equal to :

The integral int_(-(1)/(2))^((1)/(2))([x]+log((1+x)/(1-x)))*dx equals

the integral int_(0)^((1)/(2))(ln(1+2x))/(1+4x^(2))dx equals