Home
Class 11
MATHS
यदि A, B, C किसी त्रिभुज के कोण हैं तो स...

यदि A, B, C किसी त्रिभुज के कोण हैं तो सिद्ध कीजिए कि
`cos A+cos B + cos C=1+4sin.(A)/(2)sin.(B)/(2)sin.(C)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Theorem 3:cos A+cos B+cos C=1+4(sin A)/(2)(sin B)/(2)(sin C)/(2)

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

Prove that a cos A+b cos B+c cos C=4R sin A sin B sin C

Prove that a cos A + b cos B + c cos C = 4R sin A sin B sin C

sin A + sin B-sin C = 4sin ((A) / (2)) sin ((B) / (2)) cos ((C) / (2))

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.