Home
Class 12
MATHS
Prove that : tan^(-1)1/7+tan^(-1)1/(13)=...

Prove that : `tan^(-1)1/7+tan^(-1)1/(13)=tan^(-1)2/9`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

Prove that 2 tan^(-1) . 1/7 +tan^(-1) . 1/3 = tan^(-1) . 9/13

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)