Home
Class 12
MATHS
If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] ...

If `A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)]` , then verify that `A^2+A=A(A+I)` , where `I` is the identity matrix.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,0,-32,1,30,1,1]], then verify that A^(2)+A=A(A+I), where I is the identity matrix.

If A=[{:(1,0,-1),(2,1,3),(0,1,1):}] , then verify that A^(2)+A=A(A+I) where I is 3xx3 unit matrix.

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

If A=((1, 2,2),(2,1,-2),(a,2,b)) is a matrix satisfying the equation A A^(T) =9I , where I is 3xx3 identity matrix, then the ordered pair (a, b) is equal to

If A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisying the equation A A^(T)=9I , where I is 3xx3 identity matrix, then the ordered pair (a, b) is equal to

If A=[(1, -2, 1),(0, 1 ,-1),(3, -1, 1)] then find A^(3)-3A^(2)-A-3I where I is unit matrix of order 3.

If A = [(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying the equation "AA"^(T) = 9I , where I is 3xx3 identity matrix, then the ordered pair (a,b) is equal to

If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] then show that (aI + bE)^(3) = a^(3)I+3a^(2)bE where I is identify matrix of order 2.