Home
Class 11
MATHS
prove that sin75=(sqrt(6)+sqrt(2))/4...

prove that `sin75=(sqrt(6)+sqrt(2))/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin 75^0 = (sqrt(6) + sqrt(2))/4

Prove that : sin 75^0 = (sqrt(6) + sqrt(2))/4

Prove that: sin36^0=(sqrt(10-2sqrt(5)))/4 .

Prove that 2sin(pi/8)=sqrt(2-sqrt2)

Prove that, 4sin27^(@)=sqrt(5+sqrt(5))+sqrt(3-sqrt(5))

Prove that sin15^@ = (sqrt3-1)/(2sqrt2)

Prove that 4sin27^@=sqrt(5+sqrt5)-sqrt(3-sqrt5)

Prove that (sqrt(2),sqrt(2)) (-sqrt(2), -sqrt(2) ) and (-sqrt(6 ) , sqrt(6)) are ther vertices of an equilateral triangle.

Prove that (i) " sin " 75^(@) =((sqrt(6)+sqrt(2)))/(4) (ii) (cos 135^(@) -cos 120^(@))/(cos 135^(@) +cos 120^(@)) =(3 -2sqrt(2)) (iii) " tan " 15^(@) +" cot " 15^(@) =4

Prove that Sin15^(@)=(sqrt(3)-1)/(2sqrt(2))=Cos75^(@)