Home
Class 11
MATHS
alpha=1/(sqrt(10))*sinbeta=1/(sqrt(5)) (...

`alpha=1/(sqrt(10))*sinbeta=1/(sqrt(5))` (where `alpha,beta and alpha+beta` are positive acute angles). show that `alpha+beta = pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha = 1/sqrt10, cos beta = 2/sqrt5 "and" alpha, beta are positive acute angles, then find the value of (alpha + beta)

alpha, beta are positive acute angle and sec^2 alpha - cot^2 (beta/2) = 1 , then___

If sin alpha=(1)/(sqrt(10)) and sin beta=(1)/(sqrt(5)) then prove that alpha+beta=(pi)/(4)

If sin =(1)/(sqrt10), sin beta =(1)/(sqrt5) and alpha , beta are acute, show that alpha + beta = pi//4

If cos alpha=13/14 and cos beta=1/7 where alpha and beta are acute angles,show that alpha-beta=pi/3 .

If sin (alpha - beta) =1/2 and cos (alpha + beta) =1/2, where alpha and beta are positive acute angles, then alpha and beta are

If sin (alpha - beta) =1/2 and cos (alpha + beta) =1/2, where alpha and beta are positive acute angles, then alpha and beta are

If sin alpha=(3)/(sqrt(73)),cos beta=(11)/(sqrt(146)) where alpha,beta in[0,(pi)/(2)] then (alpha+beta) is equal to-

IF {:|(sinalpha,cosbeta),(cos alpha,sin beta)|=1/2 , where alpha and beta are acute angles then write the value of alpha + beta.