Home
Class 10
MATHS
From the top of a tower 100m high, a man...

From the top of a tower `100m` high, a man observes two cars on the opposite sidesof the tower and in same straight line with itsbase, with angles of depressoin `30^(@)` and `45^(@)` respectively. Find the distance between the cars . [Take `sqrt(3) = 1.732`]

Promotional Banner

Similar Questions

Explore conceptually related problems

From the top of a 120 m hight tower a man observes two cars on the opposite sides of the tower and in straight line with the base of tower with angles of depression as 60^(@) and 45^(@) . Find the distance between the cars.

From the top of a tower 100 m high, a man observes two cars on the opposite sides of the tower with angle of depression 30^(@) and 45^(@) respectively. Find the distance between the cars

The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are 60^(@) and 30^(@) respectively . Find the height of the tower .

Two men are on opposite sides of a tower. They measure the angles of elevation of the top of the tower as 30^(@) and 45^(@) respectively. If the height of the tower is 50 metres, find the distance between the two men. [Take sqrt(3) = 1.732 ]

Two people standing on the same side of a tower in a straight line with it, measure the angles of elevation of the top of the tower as 25^(@) and 50^(@) respectively. If the height of the tower is 70 m, find the distance between the two people

From the top of a 60 m high building, the angles of depression of the top and the bottom of a tower are 45^(@) and 60^(@) respectively. Find the height of the tower. [Take sqrt(3)=1.73 ]

Two men standing on either side of a tower 60m high observe the angle of elevation of the top of the tower is to be 45^@ and 60^@ respectively. Find the distance between two men.

Two points A and B are on the same side of a tower and in the same straight line with its base. The angles of depression of these points from the top of the tower are 60^(@)" and "45^(@) respectively. If the height of the tower is 15 m, then find the distance between these points.

Two points A and B are on the same side of a tower and in the same straight line with its base. The angles of depression of these points from the top of the tower are 60^(@)" and "45^(@) respectively. If the height of the tower is 15 m, then find the distance between these points.