Home
Class 11
MATHS
Find (dy)/(dx) for y=sin^(-1)(cosx), whe...

Find `(dy)/(dx)` for `y=sin^(-1)(cosx),` where `x in (0,2pi)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=sin^(-1)(cos x), where x in(0,2 pi)

Find ( dy)/( dx) for y = sin^(-1) ( cos x) , where x in ( 0, 2 pi)

Find (dy)/(dx) for y=sin(x^2+1)dot

Find (dy)/(dx) for y=sin(x^2+1)dot

Find (dy)/(dx) for y=sin(x^2+1)dot

Find (dy)/(dx) for y=sin(x^2+1)dot

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

If y=sin^(-1)(cosx) then find dy/dx .