Home
Class 11
MATHS
Find the solution set of the equation lo...

Find the solution set of the equation `log_((-x^2-6x)/10) (sin 3x + sin x)` = `log_((-x^2-6x) /10)(sin 2x) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : (log)_((-x^2-6x)//10)(sin3x+sinx)=(log)_((-x^2-6x)//10)(sin2x)

Solve : (log)_((-x^2-6x)//10)(sin3x+sinx)=(log)_((-x^2-6x)//10)(sin2x)

Solve : (log)_((-x^2-6x)//10)(sin3x+sinx)=(log)_((-x^2-6x)//10)(sin2x)

Solve : (log)_((-x^(2)-6x)/10)(sin3x+sin x)=(log)_((-x^(2)-6x)/10)(sin2x)

If log _((-x^(2) - 6 x)//10)(sin 3 x + sin x) = log_((x^(2) - 6x)//10)(sin 2 x) then x =

The solution set of the equation log_(10)(3x^(2)+12x+19)log_(10)(3x+4)=1 is

The solution set of the inequality log_(sin(pi/3)(x^2-3x+2)geq2 is

The solution set of the inequality log_(sin((pi)/(3))(x^(2)-3x+2)>=2) is

The solution set of inequality log_(1/2) sin^-1 x gt log_(1/2) cos^-1 x