Home
Class 11
MATHS
sin^2(A/2+pi/8) - sin^2(A/2-pi/8)= 1/sqr...

`sin^2(A/2+pi/8) - sin^2(A/2-pi/8)= 1/sqrt(2)sinA`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2)sinA

Prove that: sin^(2)(pi/8+A/2)-sin^(2)(pi/8-A/2)=1/sqrt(2)sinA

Prove that sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt2sinA

Prove that sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2) sin A .

Prove that cos^(2)(pi/8-A/2)-cos^(2)(pi/8+A/2) = sin(pi/4). sinA=1/sqrt(2)sinA

Prove that sin ^(2) ((pi)/(8)+(A)/(2)) - sin ^(2) ((pi)/(8) - (A)/(2))=(1)/(sqrt2) sin A .

sin^(2)((A)/(2)+(pi)/(8))-sin^(2)((A)/(2)-(pi)/(8))=(1)/(sqrt(2))sin A

Prove that, sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2))=(1)/(sqrt(2))sinA

Evaluate : sin^(2) (pi/8 +x/2) - sin^(2) (pi/8 - x/2)

Prove that: sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2))=(1)/(sqrt(2))sin A