Home
Class 11
MATHS
" W.E 2: If "A=(1)/(3)[[1,2,2],[2,1,-2],...

" W.E 2: If "A=(1)/(3)[[1,2,2],[2,1,-2],[2,-2,1]]" then "A" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1,-omega^2],[omega^2, omega^2,omega]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)

If w is a complex cube root of unity, show that ([[1,w,w^2],[w,w^2,1],[w^2,1,w]]+[[w,w^2,1],[w^2,1,w],[w,w^2,1]])*[[1],[w],[w^2]]=[[0],[0],[0]]

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1-omega^2,-omega^2],[1, omega^2,omega^4]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)

If W_(1) :W_(2) = 2 : 3 and W_(1) : W_(3) = 1 : 2 then W_(2) : W_(3) is

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

The determinant of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

Given omega = -frac{1}{2}+frac{isqrt(3)}{2} , then the value of /_\=|[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^2,omega^4]|

Let omega=-(1)/(2)+i (sqrt(3))/(2) , then the value of |[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^(2),omega^(4)]| is